Diketahui sin A = 4/5 dan sin B = 5/13, sudut A dan B diketahui sudut lancip. Nilai cos (A-B) adalah
1.
Diketahui sin A = 4/5 dan sin B = 5/13, sudut A
dan B diketahui sudut lancip. Nilai cos (A-B) adalah…………………..
untuk menjawabnya kita lihat dulu berapa sudut yang dimiliki segitiga A dan B. di soal sudah diketahui sudut dari segitiga A dan B yaitu sudut lancip ( <900 ), selanjutnya kita menggunakan rumus teorema Pythagoras untuk mencari cos A dan cos B yaitu:
sin A mempunyai rumus yaitu: sin A = depan / samping sehingga digambar terbentuk
Kita misalkan 4 berada di posisi a dan 5 berada di posisi c
maka yang harus kita cari Adalah posisi b
dengan menggunakan rumus teorema Pythagoras
b2
= c2- a2
b2 = 52-
42
b2 =
25-16
b2 = 9
b =√9
b = 3
dan sekarang kita akan mencari sin B mempunyai rumus yaitu: sin B = depan / samping sehingga digambar terbentuk
Kita misalkan 5 berada di posisi a dan 13 berada di posisi c maka yang harus kita cari adalah posisi b dengan menggunakan rumus teorema Pythagoras:
b2
= c2- a2
b2 = 132-
52
b2 =
169 -25
b2 =
144
b =√144
b = 12
dan yang terakhir kita akan mencari nilai dari cos (A-B) yaitu:
cos
(A-B) = cos A cos B + sin A sin B
cos
(A-B) = 3/5 x 12/13 + 4/5 x 5/13
cos
(A-B) = 36/65 + 20/65
cos
(A-B) = 56/65
Komentar
Posting Komentar